

SAND97-2695 Distribution
Unlimited Release Category UC 706

October 1997

An Investigation of New Mathematical Structures for Safety Analysis

J. Arlin Cooper
System Studies Department

Sandia National Laboratories
Albuquerque, NM 87185-0490

acooper@sandia.gov

Timothy J. Ross
University of New Mexico

Civil Engineering Department
Albuquerque, NM 87131

ross@unm.edu

Abstract

In probabilistic safety analyses, the input data and logical combinations of the data can involve considerable
subjectivity. Subjectivity is not usually well described mathematically. It is important that mathematical
processing of subjective information be done in as meaningful a manner as possible, especially for assessing
the safety of high consequence operations. We have begun an investigation of some innovative
mathematical structures that are potentially useful for processing subjective information in such safety
analyses, and have developed some practical illustrations of the utility of the approaches. We have
addressed active and passive safety systems, independent and dependent inputs, fault trees and event trees,
and crisp and distributed logic. Our long-range intent is to provide analysts with a comprehensive selection
of mathematically based tools, so that the best match possible is available for a particular system or portions
of systems.

The recent successes of fuzzy logic and fuzzy and hybrid mathematics in portraying subjectivity is a
reminder that a selection made from the most applicable mathematical tools is more important than forced
adaptation of conventional tools. In this paper, we consider new approaches that enhance conventional and
fuzzy PSA by improved handling of subjectivity. The most significant of the mathematical structures we
have investigated (from a standpoint of safety analysis applications) will be described, and the general types
of applications will be outlined.

Some of the mathematical structures investigated are based on various logical norms, Ordered Weighted
Averaging, implication operations, Gamma operators, sigmoid operators, inference networks, failure “race”
comparators, min/max ordinate logic, threshold logic, conditional possibility, Frechet-based dependence
operators, and constrained mathematics.

ii

Acknowledgments

DOE Laboratory Directed Research and Development (LDRD) funds supported most of
the work on this project. A large number of people acted as reviewers, idea-exchangers,
and contributors, including George Klir, State University of New York, Binghamton,
Scott Ferson, Applied Biomathematics, Don Wunsch, Texas Tech, and Dave Carlson and
Michael Bohn, Sandia National Laboratories. The COSMET software development was
expertly done by Bob Roginski, Sandia National Laboratories, who also offered
considerable support interacting on the concepts.

iii

TABLE OF CONTENTS

1. INTRODUCTION………………………………………..………………………..1
2. CONTEST TOOL……………………………….………………………..……….4
3. MIN/MAX INTERVAL LOGIC TOOL…………………………………………..4
4. MIN/MAX ORDINATE TOOL…………………………………..………………4
5. FUZZY “AND” TOOL………………… …………………………………………5
6. FUZZY “OR” TOOL………………………………………………………………5
7. LUKASIEWICZ NORMS…………………………………………………………6
8. COMPOSITION OPERATOR…………………………………………………….6
9. WEIGHTED SUM TOOL…………………………………………………………6
10. FUZZY SIMILARITY RELATIONS……………………………………..………7
11. ACTIVE SAFETY SYSTEM APPROACH……………………………………….8
12. PASSIVE SAFETY SYSTEM APPROACH………………………………………9
13. USE OF CONSTRAINED MATHEMATICS……………………………..…….10
14. SOFTWARE……………………………………………………………..……….15
CONCLUSIONS………………………………………………………………….….16
REFERENCES…………………………………………….…………………………17

LIST OF FIGURES

1. A Solution for Tensile Failure of Series-Parallel Chain Links……….…………….5
2. A Schematic of the Example Fault Tree…………………………………………..8
3. Contest Tool Plot……………………………….……………………………..…16
4. Weighted Sum Example Problem…………………………………………...……16
5. Extreme Minmax Example Problem…………………………………..….………16
6. Link Minmax Example Problem………………………………………………….16

iv

An Investigation of New Mathematical Structures for Safety Analysis

J. Arlin Cooper
Sandia National Laboratories*

Albuquerque, NM 87185-0490
acooper@sandia.gov

Timothy J. Ross
University of New Mexico

Civil Engineering Department
Albuquerque, NM 87131

ross@unm.edu

ABSTRACT

In probabilistic safety analyses, the input data
and logical combinations of the data can involve
considerable subjectivity. Subjectivity is not
usually well described mathematically. It is
important that mathematical processing of
subjective information be done in as meaningful
a manner as possible, especially for assessing the
safety of high consequence operations. We have
begun an investigation of some innovative
mathematical structures that are potentially
useful for processing subjective information in
such safety analyses, and have developed some
practical illustrations of the utility of the
approaches. We have addressed active and
passive safety systems, independent and
dependent inputs, fault trees and event trees, and
crisp and distributed logic. Our long-range intent
is to provide analysts with a comprehensive
selection of mathematically based tools, so that
the best match possible is available for a
particular system or portions of systems.

The recent successes of fuzzy logic and fuzzy
and hybrid mathematics in portraying
subjectivity is a reminder that a selection made
from the most applicable mathematical tools is
more important than forced adaptation of
conventional tools. In this paper, we consider
new approaches that enhance conventional and
fuzzy PSA by improved handling of subjectivity.
The most significant of the mathematical
structures we have investigated (from a
standpoint of safety analysis applications) will be
described, and the general types of applications
will be outlined.

Some of the mathematical structures investigated
are based on various logical norms, Ordered
Weighted Averaging, implication operations,
Gamma operators, sigmoid operators, inference
networks, failure “race” comparators, min/max
ordinate logic, threshold logic, conditional
possibility, Frechet-based dependence operators,
and constrained mathematics.

1. INTRODUCTION

Failure is a nearly unavoidable phenomenon with
complex technological systems and products.
When one considers that perhaps there can be
various degrees of degradation between complete
failure and no failure, and that many systems
contain both random and ambiguous kinds of
description, it becomes a natural step to consider
the utility of fuzzy or possibilistic methodologies
in describing this new paradigm. Fuzzy and
possibilistic methodologies can serve as a
complementary approach to probabilistic
methods. The use of fuzzy methodology to
system failure engineering can be traced back to
the work by Kaufmann [1]. He introduced the
notion of a component possibility as a reliability
index to supplement that of component
probability. Then, in the 1980’s significant
strides in the use of fuzzy logic in system failure
engineering started to appear in the areas of
human reliability, hardware reliability, software
reliability, and structural reliability [2].

* Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

One aim in this paper is to suggest that the
general paradigm of logical models for undesired
outcomes, conventionally described by fault trees
and event trees from the probabilistic

2

perspective, can be supplemented considerably to
extend the current approach to include various
gate logics, to represent probability and
possibility as membership functions on
probabilities and possibilities, and to propagate
fuzziness and dependence in the logic using a
variety of mathematical structures to supplement
the standard Boolean logic.

Probabilistic safety analyses (PSAs) have been
performed for many years applied to a variety of
situations. The most conventional (and
convenient) form of PSA is to prescribe the
probability of occurrence for particular “events”
that could contribute to failure, and to combine
such events in a crisp logic structure (e.g., a fault
tree, or an event tree). Probabilistic calculus or
various forms of Monte Carlo analysis are
capable of accounting for stochastic variability
and correlation. However, this basic PSA
methodology does not accurately portray some
situations, most significantly when the inputs
contain a significant degree of subjectivity, or are
dependent, or the models are inexact [3, 4].
Because of the development of more complex,
higher consequence systems, and because of
businesses’ and society’s increasing reluctance to
accept overly optimistic safety analyses, it is now
becoming important to improve analysis
approaches. Furthermore, almost all safety
analyses depend on significant subjectivity, both
in determining inputs and in determining models
for processing the inputs. Not only is this factor
not treated directly in conventional analyses, but
its role is rarely indicated to the recipient of the
analyses. For these reasons, it is important to
consider new innovative approaches that may
enhance conventional PSA by improved handling
of complex dependence interactions, “soft”
failures, and subjectivity factors.

In this paper, techniques based on new
mathematical structures will be described,
including continuous (e.g., fuzzy) logic
operations, various “norms” for logic
combination, and new methods for deriving
output information for combinational logic (and
time-dependent) processing of inputs. These can
serve as a supplementary approach to
probabilistic methods

The new methodologies we have developed are
intended to optimize the use of experimental
data, expert elicitation, and mathematical models.
Some of these have now been incorporated in

software in order to provide safety analysts with
improved automated tools.

The essence of fuzzy and possibilistic logics is in
the capability to model imprecision and
vagueness by assigning membership functions to
the variables. Membership functions (mfs) differ
from probability distribution functions (pdfs) in
that, the pdfs describe the uncertainty in the
future states of the variables while mfs describe
the vagueness in the definition of the state itself
or the imprecision in the measurement or the
representation of the variable used to
characterize the future state. A principal
difference in classical probability models and
fuzzy models is the adherence to the law of
additivity. Probability models require a strict
adherence, implying that a value assigned to a
variable cannot be assigned to a different set of
variables. Fuzzy and possibilistic logics, allow a
diverse classification, thus enabling partial
membership in various sets (this can be useful in
modeling rare events, wherein data available are
very limited or the engineering knowledge
content is low).

Due to intra-component dependence and the rare
or otherwise unknown failure rates, it is
appropriate to model some systems by fuzzy set
or possibilistic theory. For example, in the case
of a capacitor which ceases to function under
high temperatures, the capacitor can deteriorate
or have built in imperfections which cause the
component not to behave the way it was designed
to operate as temperature increases. Instead of
assigning singleton values of probability to each
basic event in a logic structure, it is sometimes
more appropriate to define the component failure
probabilities, and eventually the system failure
probability, by mf or possibilistic functions.
Intra-component dependencies may arise due to
the aggregation of various sub-components, each
of which are represented in the logic structure as
single components. The extension of this
concept to systems and inter-component
dependence is natural.

With these preliminary ideas considered, we can
articulate a broader, more general paradigm for
the assessment of uncertainty in logical models
of failure. The current prevalent approach makes
use of a Boolean logic and a “tree” structure, (1)
where the gates in the fault trees or event trees
essentially use the classical notion of inference,
(2) where the basic event probabilities are either

3

single values, or are represented by probability
density functions, and (3) where the gate logics
are the classical probability norms. We extend
this current approach to a more comprehensive
approach (1) where the gates in the trees use any
of a variety of inference schemes to provide
confidence in the data available for the basic
event failures, (2) where the basic event
probabilities are characterized by fuzzy or
possibilistic mfs, and (3) where the gate logics
are expressed by any number of various logical
norms. The advantages of this approach are: we
can model more than just random uncertainty in
the tree, we can assess more general gate logics,
we can embed notions of time variability and
component dependencies into the tree, and we
can characterize, in numerical terms, the strength
of our confidence in the final estimates of failure
probability for the tree.
We began our work by conducting a literature
search for mathematical structures that had been
considered for various applications, and devoted
considerable time on developing some of our
own origination. We identified twelve general
structures, which are:

1. A “Contest” tool, which allows two or
more fuzzy entities to compete for
success (or failure). The mathematical
result is the fuzzy possibility of
succeeding for each entity.

2. A ”Weighted Sum” tool, which allows
weighted accumulation of possibilistic
factors such as safety program attribute
metrics and comparison to a fuzzy goal.

3. Fuzzy “anding,” where the satisfaction
of the “and” logic has a membership,
rather than a crisp yes or no or a
probability.

4. Fuzzy “oring,” where the satisfaction of
the “or” logic has a membership, rather
than a crisp yes or no or a probability.

5. Min/Max interval length logic, where
the interval bounds on a range of
possible abscissa values can be
“stretched” along the abscissa.

6. Min/Max ordinate logic, where for each
logic component the smallest ordinate
value of a collection at each abscissa
point determines the possibilistic result
or the maximum value determines the
possibilistic result.

7. Implication operators, where the
implication does not represent
probabilities of failure; but rather
represents what is happening implicitly
in the logic at a particular gate.

8. Lukasiewicz norms, which for the
probabilities of AND gates are closer to
zero and the OR gate probabilities
closer to one than the probabilistic
norms. This feature is especially
interesting in systems where the basic
event probabilities are close to zero or
one.

9. Composition operators, which are
another mechanism to propagate fuzzy
probabilities through a logic tree. The
norms are used to aggregate probability
information at the basic level in a logic
tree. The propagation of this
aggregated value will then be
propagated to the next higher level
using a composition operator. This
propagated value, however, will be
associated with a confidence value that
will come from the nature of the
implication used, as discussed. This
idea is also powerful when an analyst
wishes to model dynamic features or
intra-component dependence issues with
a composition.

10. OWA (ordered-weighted-average) [5, 6]
operators provide an ordering of the
probabilities of events at a branch of a
logic tree that are multiplied by weights
to produce the ordered operator. This
operator expresses the top-level
probability of that particular branch of a
tree. The linear operator used is a
summation, because the parameters are
discrete and countable. If the linear
operator summation were replaced by a
linear integral, the effect is that the
branches of the tree become continuous
and uncountable. Second, the weights
become a continuous function, instead
of a series of delta functions (discrete
valued quantities). Third, the
mathematical constraint that the discrete
weights sum to unity becomes a
constraint that the integral of the
weighting function is equal to unity.
Fourth, the probabilities become
probability density functions. This can

4

lead to continuous models for fault trees
and event trees.

11. Multiobjective decision problems have
been investigated as possible analogs to
the logical constructs of fault and event
trees. In these kinds of problems there
is involved the selection of one
alternative ai, from a universe of
alternatives A given a collection, or set,
say {O}, of criteria or objectives that
are important to the decision maker.
We want to evaluate how well each
alternative, or choice, satisfies each
objective, and we wish to combine the
weighted objectives into an overall
decision function in a plausible way.

12. Fuzzy similarity relations investigated
include two methods to propagate fuzzy
information within a fault tree–a double
composition method and a normative
method. An augmentation of the
normative method will be illustrated.

These mathematical processes were all evaluated
as potential safety analysis tools. Some
promising applications were identified and will
be outlined in this paper. Finally, the
interrelationship of the applicable tools into a
single safety assessment tool was considered.
Many of the results were implemented in
software routines, which will be described.
Some of the approaches considered will be
addressed in more detail.

2. CONTEST TOOL

The “contest” tool can be used for quantitative or
qualitative information. The input abscissa is a
linear measure of “stress,” which could be
temperature, pressure, acceleration, etc. The user
defines the stressor and the units (e.g., degrees
Centigrade) and a fuzzy number about where
failure occurs for two or more entities. There
could be a “family” of these contests entered to
allow for some parameter like the direction from
which the stressor source comes, rate of increase
of temperature, etc. Each one implies a
possibilistic subtraction, e.g., S Wi i− , where Wi

is one possibilistic number and Si is the other
possibilistic number. Then we can calculate an
mf for the result. The maximum of these results
is an mf for the result of each pairwise contest.
Another aspect of this tool is that the stressor
may be bounded (a possibilistic entity). In this

case, the stress and both response characteristics
of every pair interact together to give a
possibility of failure. This is done by computing
the ordinate failure possibility at each abscissa
point of the stress mf.

3. MIN/MAX INTERVAL LOGIC
TOOL

In some risk analysis problems, reasonable risk is
estimated by discounting certain events that are
not considered credible. These can either
contribute to failure or act to prevent failure. In
probabilistic risk assessment, these are
possibilistic functions with probabilistic
abscissas and level-of-presumption ordinates. A
useful strategy is to take the overall event mf and
show an upper and lower extension for including
low-credibility threats and excluding low-
credibility preventive events. The maximum
abscissa value at each level of presumption for
the cause functions gives the upper extension,
and the minimum abscissa value at each level of
presumption for the prevent functions gives the
lower extension. This allows demonstrating that
situations could be even worse (or better) if
slightly less credible occurrences happen, as well
as specifying the implications of discounting
these occurrences.

4. MIN/MAX ORDINATE TOOL

Consider a “sum of cutsets” Boolean logic
equation. Each input has a stressor for an
abscissa and a failure possibility for an ordinate.
These functions increase monotonically from
zero possibility to one possibility as stress
increases. An “and-like” (&) operation is done
by considering each level of presumption for the
smallest ordinate value and an “or-like” (|)
operation is done by considering each level of
presumption for the largest ordinate value.

A B A x B x& min[(), ()]= (1)

 A B A x B x| max[(), ()]= (2)

The user equation for combining the terms
includes & functions and/or | functions. For the
& function, the minimum of all the operand
ordinates is computed at each abscissa value.
For the | function, the maximum of all the
ordinate values is computed at each abscissa
value. This function is called the intermediate
function, I(x).

5

There must also be a (user-defined) stress
function, showing a values (point, square,
triangle, or trapezoid) for the possibility of levels
of applied stress. Now we apply this possibility-
of-stress function to the intermediate function to
obtain the tool output. This is done by
computing the ordinate membership values of
response for each level of stress. The spectrum
of possibility of failure thereby portrayed can
also be associated with stressor membership, for
example by portraying a horizontal bar graph of
possibilities with the central part corresponding
to the maximum level of stressor membership
portrayed with more plot intensity.

F x S x I x dx() () ()= ∫ (3)

where the ordinate of I(x) over the abscissa range
of S(x) gives the mf of F(x). This concept is
illustrated in Figure 1 using a chain link analogy.
In electronics safety analysis, for example,
weakest-link failures are common in series
components like shift register elements, and
strongest-chain support strength can be
illustrated by redundant processing components.

Tensile Failure

LinkA Link B

Link C Link D

Link A
Failure

Link B
Failure

Link C
Failure

Link D
Failure

Figure 1. A Solution for Tensile Failure
of Series-Parallel Chain Links

5. FUZZY “AND” TOOL

One way of expressing a crisp-logic “and”
function is:

f = 1 iff x ni
i

n

=
∑ =

1

 (4)

where the xi are inputs and f is the output. Since
fuzzy numbers may approach one, a softer
transition from 0 to one can be made using a
“sigmoid” function [5]. For example:

()
()f

x e

n e

x n

=
−
−

1

1 1

/

/
 (5)

6. FUZZY “OR” TOOL

One way of expressing a crisp-logic “or”
function is:

f = 1 iff xi
i

n

=
∑ >

1

0 (6)

A softer transition can be made using, for
example:

f
e

e

x

n=
−
−

−

−

1

1

10

10 (7)

7. LUKASIEWICZ NORMS

The combination and propagation of the
membership functions through a fault tree can be
accomplished by one of several prescribed
normative functions, norms. In the mathematics
of logic, functions called T-norms are used for
the intersection of two or more events, while so-
called S-norms are used for the union of two or
more events. Common non-fuzzy, non-
probabilistic T-norms can be found in the
literature. The Lukasiewicz norm is:

T x y x y(,) max(,)= + −0 1 (8)

S-norms (also called T-conorms) are used to
define the union of two or more events. The
Lukasiewicz norm is:

6

S(,) min(,)x y x y= +1 (9)

The Lukasiewicz norms have differences in their
capacities to consider other than the classical
cases. The Lukasiewicz norms for the
probabilities of and gates are closer to zero and
the or gate probabilities closer to one than the
probabilistic norms. This feature is especially
critical in systems where the basic event
probabilities are close to zero or one, as is also
the case for probabilistic norms.

8. COMPOSITION OPERATOR

In addition to the T-norms and S-norms, the
composition operator can be another mechanism
to propagate uncertain probabilities through a
logic tree. The symbolic form of the
composition operation is:

A = B o R (10)

where A is the result to be calculated at the next
level in a tree, B is the value of the probability
assimilated from among the basic events using
either a logical intersection or logical union, and
R is the form of inference used at a particular
gate. The symbol “o” is the composition symbol.
A list of the various composition operators is
available in the literature [7].

The norms are used to aggregated probability
information at the basic level in a logic tree. The
propagation of this aggregated value is then
propagated to the next higher level using a
composition operator. This propagated value,
however, will be associated with a confidence
value that will come from the nature of the
implication used. This idea is also powerful
when an analyst wishes to model dynamic
features or intra-component dependence issues
with a composition.

9. WEIGHTED SUM TOOL

An interesting question in a safety assessment is
how to provide metrics to measure a safety
program against a set of goals, which include: 1)
meet (or exceed) any quantitative safety
requirements (e.g., P(disaster)<<10-6 per credible
situation), and 2) have in place sufficient

qualitative checks and balances to assure that
safety is maintained for all operations,
maintenance, testing, and changes that may occur
during system life. For the quantitative measure,
the ordinate associated with the uncertainty
function can be thought of as probabilistic (e.g., a
pdf) or “possibilistic” (e.g., level of presumption,
or degree of possibility, or mf). For the
qualitative measure, the abscissa value can be an
expert engineering judgment of value, and the
ordinate can be membership or possibility of the
value.

The “weighted sum” tool is one way to approach
the qualitative measure. For example, each user-
chosen attribute can be judged by persons expert
in the process to have value between 0 and 10
with a value whose abscissa and ordinate
describe a fuzzy number (e.g., trapezoid, triangle,
square function) with no abscissa values
exceeding 10 or going below zero. The
membership ordinate is between 0 and 1. The
user-chosen weights could be point numbers that
can be distributed among the attributes so that
the sum is exactly 1. Another user input would
be the “goal” for the overall value (e.g., “about
8”), which can be a subjective entry (trapezoid,
triangle, square).

The test of the outcome is to compare (by fuzzy
subtraction) the weighted sum with the goal. The
resultant possibilistic function shows graphically
how well the goal is met.

10. FUZZY SIMILARITY
RELATIONS

Two new methods to propagate fuzzy
information within a fault tree–a double
composition method and a normative method–
have been developed. We will concentrate here
on an augmentation of the normative method.
Suppose we have the yet-undefined composition:

B = A o R (11)

where A can be an array of values for the basic
elements of a particular intermediate event in a
fault tree. For example, this array A could
contain the point values used to estimate the
probabilities of failure of each basic event, and
the array could also contain some information
describing the confidence the analyst has in these
probability values. Without loss of generality,

7

the elements of this array A could also be fuzzy
sets. The array B is also defined on probabilities,
and this represents the set of results for the
intermediate events in a logic tree. Generally,
however, we do not know the contents of the
array B, because this is a calculated quantity in
the logic tree as we progress up the tree from
basic events eventually to the top event in the
tree. The elements of R represent the
dependencies among the basic events, or
components, contained in the intermediate event.
In active safety systems, R can be formed from
an extensive data base of failure statistics on
hardware components, or data on human
responses to well-defined situations.

On the other hand, for passive safety systems, R
can be formed from first principles about basic
physical relations or from human knowledge
about the passive safety system.

What remains in the development of the
proposed fuzzy methodology is the definition of
what operations will be performed in the
composition given as Equation (11). We
introduce the notation,

B = £ (A o R)= £ (A’) (12)

where A’ simply represents the composition
operation, and where the symbol £ is a two-
dimensional operator which has the form,

£ =
L1

L2

 (13)

where L1 is an implication operator used to
propagate truth values through the fault tree, and
L2 is a T-norm or S-norm used to propagate
probabilities through the fault tree. Both
operators L1 and L2 can take on many different
forms based on the logic in the gate in the fault
tree. For example, if the fault tree is of the
standard form (Boolean logic with probabilistic
gates), then operator L1 is a classical implication
and operator L2 is a probabilistic T-norm for an
and gate and a probabilistic S-norm for an or
gate within the fault tree.

In the implementation of this new fuzzy
methodology, we define some constraints. The
operator £ in Equation (12) is a 2 x 1 matrix of
operators (i.e., L1 and L2), the array A is a 2 x n
array of values, where the first row of A contains

the truth values for the basic elements in the
intermediate event and the second row of A
contains the probabilities of failure (or
membership functions) for each of the basic
elements, the relation R is an n x n array
containing values which represent the degree of
dependency between the basic elements, and n is
the number of basic elements in a given
intermediate event in the fault tree.

In illustrating this methodology, the following
example problem is used. The fault tree in
Figure 2 shows a simple generic model for safety
where the basic events A, B, I, T, and F are
symbols for: an accident, A, failure given the
accident of three safety subsystems I, T, and F, or
bypass of all three subsystems, B. We will show
a procedure to assess the impact of mutual
dependence, e.g., transcending the assumption
that basic event F is also independent of the basic
events I and T. The illustration of dependence
makes use of a relational matrix, R, which
contains the dependency information for the
three basic events, I, T and F.

The development of the relational matrix, R, is
approached from two perspectives. Each of
these two perspectives illustrates a different way
of formulating the dependence fuzzy relation, R,
which is of central interest in this methodology.
The first presumes that the components in the
first intermediate event (IE1) represented in
Figure 2 are pieces of an active safety system,
and that an extensive data base of numerical
information is available on the failure dependent
statistics of the various components. In this first
approach, we will use a numerical method called
the cosine amplitude method to produce the
elements of R from a numerical data set. The
second approach presumes that the components I,
T, and F shown in Figure 2 are components in a
passive safety system, and that the content in R
can be formulated from rules which describe the
dependence relationship among the three basic
events.

8

I T F

B

A

TOP EVENT - IE4

0.21 0.53 0.36

0.15

0.26

0.4

0.3

0.6

0.2

IE3

IE2

IE1

IE - Intermediate Events

AND Gate

OR Gate

Basic Event

Fig. 2. A Schematic of the Example Fault Tree

11. ACTIVE SAFETY SYSTEM
APPROACH

The method used here, for a situation where
numerical failure information exists, is the cosine
amplitude method [7]. As with all similarity
relations, this similarity metric makes use of a
collection of data samples; n data samples in
particular. If these data samples are collected,
they form a data array, X,

X = {x 1, x2,xn} (14)

Each of the elements, xi, in the data array X is
itself a vector of length m, that is

xi = {x i1, xi 2,xim} (15)

Hence, each of the data samples can be thought
of as a point in m-dimensional space, where each
point needs m coordinates for a complete
description. Each element of a relation, rij ,
results through a pairwise comparison of two
data samples, say xi and xj, where the strength of
the relationship between data sample xi and data
sample xj is given by the membership value
expressing that strength, that is,
rij = µ R(xi, yj) . The relation matrix will be of

size n x n and, as will be the case for all
similarity relations, the matrix will be reflexive
and symmetric. The cosine amplitude method
calculates rij in the following manner, and
guarantees, as do all similarity methods, that 0
<rij<1.

rij =
XikXjk

k =1

m

∑

ik

2X
k=1

m

∑

 jk

2X
k =1

m

∑

, where

i, j = 1, 2,, n (16)

A dependence relation, R (from a constructed
example), is,

R =

1.00 050 087

050 100 050

087 050 100

. .

. . .

. . .

 (17)

As a point of comparison, if the three
components are completely independent of one
another, R becomes the identity matrix.

With the dependence relation, R, now developed,
Equation 12 can be used to determine the truth
values and probabilities propagated from the
basic events I, T, and F up the fault tree in Figure
2 to the intermediate event IE1. If the
composition in Equation 12 uses the max-min
method, then the intermediate result, A’, is given
as:

A '
. . .

. . .

. .

. .

. .

. . .

. . .
 =

06 08 07

021 053 036

1 050 087

050 1 050

087 050 1

07 08 07

050 053 050

=

$

(18)

Now, the operators, £, from Equation 13 can be
performed on the matrix A’, with L1 operating on
the first row of A’ and L2 operating on the second
row of A’. The first row (labeled 1) in Table 1,
shows results in conducting this operation on the
basic elements of intermediate event IE1. The
various results are due to the use of different
methods to conduct operations L1 and L2 on the
basic elements I, T, and F, as detailed in the
footnotes to the table. In addition, the
propagation of probabilities and truth values up
the entire fault tree (to the top event IE4) of
Figure 2 is also shown in Table 1 as rows 2, 3
and Top. For these rows (2, 3 and Top) the
calculus used is simply that due to a
straightforward application of the methods
detailed in the footnotes in the table; i.e., no
subjectivity matrix is developed for the higher
levels of the tree, and all components in the

9

upper levels of tree are presumed to be
independent (e.g., in row 2 of the fault tree basic
event B and intermediate event IE1 are
independent). In each row in Table 1 the first
number in the data-pairs is the probability of
failure at that level of the tree, and the second
number in the data-pairs is the truth value.

Table 1. Propagation of Probability and Truth

Level Gate L(P, T)
a

P(P, T)b

1

2

3

TOP

AND

OR

AND

(0, 0.7)

(0.3, 0.6)

(0, 1)

(0, 0.2)

(0.13, 0.4)

(0.26, 0.7)

(0.07, 0.6)

(0.07, 0.4)

F(P, T)c

(0.5, 0.4)

(0.15, 0.3)

(0.15, 0.3)

(0.15, 0.2)

a Lukasiewicz norm and implication
b Probabilistic norm and classical
implication
c Zadeh’s norm with Mamdani’s
implication operator.

12. PASSIVE SAFETY SYSTEM
APPROACH

In the second approach, the elements of R are
determined through rules that express
dependence among the three components of the
IE1 subsystem shown in Figure 2. Each of the
rules will result in a relation using, for example,
the Cartesian product (which uses the pairwise
minimum operator on the membership values)
between the antecedent and the consequent
portions of the rules [7].

Now, in each matrix information relates the
dependence between pairs of the components
(i.e., between I and T, between T and F, and
between I and F). But, for the methodology
proposed here, we want to condense the
information in each matrix to a single quantity
that represents, in an average sense, the
information in the matrix, using defuzzification.
The defuzzification operation chosen is known as
the centroid method. Each matrix can be thought
of as a two-dimensional grid, where each
Cartesian coordinate within the grid has a weight,
which is the membership value. The centroid of
this grid represents the weighted average of the
entire matrix. We can determine the coordinates
of the centroid and the weight (maximum

membership value) at this coordinate. These
values for each of the three relational matrices
are, for the example:

Coordinates for I - T: (0.25, 0.76);

Max µ I-T = 06.
Coordinates for T - F: (0.82, 0.58);

Max µT-F = 06.
Coordinates for F - I: (0.34, 0.61);

Max µF -I = 0.5

Hence, if these dependence values are arranged
in a matrix, R, the resulting dependency matrix
for the three components, I, T, and F, becomes:

R
I

T

F

I T F

=
1 06 05

06 1 06

05 06 1

. .

. .

. .

 (19)

This subjectivity matrix, R, is now used in
Equation (3) with a max-min form of
composition to find the intermediate result, A’.

A '
. . .

. . .

. .

. .

. .

. . .

. . .
 =

06 08 07

021 053 036

1 06 05

06 1 06

05 06 1

05 08 07

053 053 053

=

$

(20)

As before in the active safety system example,
the operators, £, from Equation (4) can be
performed on the matrix A’, with L1 operating on
the first row of A’ and L2 operating on the second
row of A’. Also, as before, the propagation of
probabilities and truth values up the entire fault
tree of Figure 2 is shown in Table 2 as rows 2, 3
and Top, where all components in the upper
levels of tree are presumed to be independent.

Table 2. Propagation of Probability and Truth

Level Gate L(P, T)
a

P(P, T)b

1

2

3

TOP

AND

OR

AND

(0, 0.09)

(0.3, 0.6)

(0, 1)

(0, 0.2)

(0.15, 0.5)

(0.28, 0.7)

(0.07, 0.6)

(0.07, 0.4)

F(P, T)c

(0.53, 0.4)

(0.15, 0.3)

(0.15, 0.3)

(0.15, 0.2)

a Lukasiewicz norm and implication
b Probabilistic norm and classical
implication

10

c Zadeh’s norm with Mamdani’s
implication operator.

13. USE OF CONSTRAINED
MATHEMATICS

Unconstrained application of the basic rules of
uncertainty mathematics, e.g., probabilistic
calculus, interval analysis, and fuzzy
mathematics, can be inaccurate [Ref. 8]. The
effect is that probability distributions, interval
bounds, or fuzzy (bounded) numbers can be
generated that exceed more accurate, narrower
bounds, unless mathematical constraints are
enforced. This problem is most easily solved in
Monte Carlo or Latin Hypercube Sampling
routines by sampling only once for a variable in a
logic expression, rather than re-sampling for each
appearance of the variable. The situation is more
difficult in interval-based analysis techniques, as
we will illustrate below, but still solvable.

In order to perform correct constrained
mathematics calculations, it is also important that
approximations, which are useful in efficient
probabilistic evaluation of logical combinations
of events, be avoided. We will briefly examine
these approximations, in order to set the stage for
an accurate constrained mathematical approach.

The deductive or inductive logic for outcomes
developed using fault trees and event trees are
typically expressed as Boolean algebra
equations. When these equations are written
disjunctively, they are said to express a logical
union of terms that can be either “events”
(occurrences of safety importance) or “cutsets”
(logical intersections of events). For the
following discussion, we will first treat the
variables as independent. Then the question of
this (difficult to satisfy) condition will be
revisited. The calculation of the probability of
the “top event” described by the Boolean
expression can be computed from the
probabilities of the individual events in several
ways, and all of these have been used in software
products.

 1. The “rare event approximation” is
performed by computing the probabilistic
sum of each “cutset” of a Boolean sum. This
approach is only correct if all cutsets are
disjoint (an extremely rare situation). It is a

useful approximation only if all of the cutsets
have very low probabilities.
 2. A canonical Boolean “union of
minterms” (“truth-table”-rows for which the
function is satisfied) expression appears
attractive for probabilistic evaluation, because
all of the terms are disjoint, and therefore the
probabilities of the events in each minterm
can be multiplied to produce a minterm
probability, and the minterm probabilities can
be directly added. For relatively complex
problems, this approach is impractical,
because an n-variable problem has 2n

potential minterms. For example, a problem
having 100 variables could have an
astronomical 1030 terms to track.
 3. A conventional algorithm for the
probability of the union of Boolean sets can
be exemplified by the simplest form of the
method (for two terms), which is:
p A B P A P B P A B() () () ()∪ = + − ∩ 1. If the

terms are independent, the expression
becomes:
p A B P A P B P A P B() () () () ()∪ = + − × .

Additional independent sets can be
successively brought into the union, e.g.,:
P A B C P A B P C P A B P C() () () () ()∪ ∪ = ∪ + − ∪ ×
. The ability to combine successive inputs
with prior results makes this algorithm look
attractive for software implementation.
However, practical computations seldom
involve unions of independent terms. One
reason is subtle inherent dependence between
the processes leading to events, but a more
salient factor is dependence due to variables
appearing in multiple disjunctive terms. A
simple example is y x x x x= ∪1 2 2 3

 (where

juxtaposition indicates intersection). For this
expression,
P y P x P x P x P x P x P x P x() () () () () () () ()= × + × − × ×1 2 2 3 1 2 3

. The methodology described above, if the
dependence were not recognized, would give
the incorrect result
P y P x P x P x P x P x P x P x P x() () () () () () () () ()= × + × − × × ×1 2 2 3 1 2 2 3

. A straightforward approach to solve these
types of problems correctly using the
methodology described above is to
methodically track all repetitions of variables.
This is generally comparable in complexity to
the methodology described in part 2 above.

1 The notation convention is that ∪ represents logical
union, ∩ represents logical intersection, and + and −
indicate ordinary addition and subtraction.

11

 4. An accurate and potentially efficient
disjoint set algorithm based on successive
application of “Shannon’s decomposition” is
called the “Sigma Pi” algorithm [Ref. 9]. It
generally allows one to efficiently transform
the original Boolean equation into a disjoint
set Boolean expression. In some situations,
the Sigma Pi algorithm is difficult to
implement. Recursive operations are required
in order to expand and recombine data, and a
decision must be made about whether or not
to use “pattern recognition” to eliminate
recalculation of identical subfunctions.

5. A relatively new, accurate, and generally
efficient disjoint set algorithm is based on a
segmented form of Boolean logic processing
[Ref. 10]. This algorithm was used to derive
the probability results presented in this paper.

An example illustrating the necessity for
constrained mathematics is the union of two
independent events for which the probabilities
are specified by intervals, P(A) = [0.1, 0.8]2 and
P(B) = [0.2, 0.9]. Using unconstrained
operations of interval analysis, one obtains
P A B()∪ = [− 0.42, 1.68], both of which are of

course impossible for probabilities. The problem
is that both interval bounds combine an
operand’s lower bound together with its upper
bound, which is not possible for a single event.
Restricting events to have only one value at a
time, one obtains the correct answer, which is
P A B()∪ = [0.28, 0.98].

Although constrained mathematics in general
requires a complex algorithm, there are situations
in probabilistic evaluation of logic expressions
for which it can be done in a straightforward
manner. Linking the results in a computer
parsing routine is important for software
implementation, and this too can be done very
efficiently for many functions. Demonstrating
these assertions is a major purpose of this paper.
One important situation, which we address here,
involves the probability evaluation of a Boolean
function that is unate or has unate variables.
Boolean functions are logical descriptions that
can be applied to describe the outcomes of fault
trees and event trees, among many other safety
analysis applications.

2 The first member of the ordered pair is by convention the
lower bound; the second is the upper bound.

Unateness [Ref. 11] means that every variable of
a Boolean function can be expressed such that
each variable appears either complemented or
uncomplemented, but both senses are not
necessary. Any variable that meets this condition
is called a unate variable (positive unate if
uncomplemented, negative unate if
complemented). Unateness is especially
important in logical trees, because an event tree
or fault tree having only “ands” and “ors” such
that each event affects the probabilistic outcome
either positively everywhere it appears or
negatively everywhere it appears can be
represented by a unate Boolean logic expression.
This tree condition is sufficient for unateness.

An algorithm that accounts for constrained
mathematics in an expression of probability for
the Boolean function outcome is:

For a positive unate variable, the lower bound of
the result is a function of the lower bound of
each appearance of the variable, and the upper
bound of the result is a function of the upper
bound of each appearance of the variable. For a
negative unate variable, the lower bound of the
result is a function of the upper bound of each
appearance of the variable, and the upper bound
of the result is a function of the lower bound of
each appearance of the variable.

This is formalized in the following treatment.

For a Boolean function, y f x x xn= (, ,...)1 2
, a

variable xi is positive unate iff
y f x x x x f x x x x yi i n i n i1 1 2 1 2 01 0= = ⊃ = =(, ,..., ,...,) (, ,..., ,...,)

The variable xi is negative unate iff
y f x x x x f x x x x yi i n i n i1 1 2 1 2 01 0= = ⊂ = =(, ,..., ,...,) (, ,..., ,...,)

If
y f x x x x f x x x x yi i n i n i1 1 2 1 2 01 0= = = = =(, ,..., ,...,) (, ,..., ,...,)

xi is a redundant variable and need not appear

in the expression for the function.

For the probability, P y() , that the Boolean

function is satisfied, all uncertain variables, xi ,

are constrained to have identical values within
their uncertainty range for all appearances of the
variable in an algebraic expression for P y() .

This is true whether the uncertainty is
represented by a probability density function, a
fuzzy number, an interval, or any other
practically meaningful uncertainty measure.
Where lower and upper bounds are involved

12

(e.g., interval analysis and fuzzy mathematics)
the bound must be the same for each appearance
of the variable in the expression for P y() .

.Theorem 1:

a) The lower bound of P y() is a function of the

lower bound of positive unate variables and the
upper bound of P y() is a function of the upper

bound of positive unate variables; b) the upper
bound of P y() is a function of the lower bound

of negative unate variables and the lower bound
of P y() is a function of the upper bound of

negative unate variables; c) there is no
contribution by a variable that is redundant.

Proof:

a) Consider the equivalent expression for

y f x x x mn j= = ∑(, ,...)1 2
, where the sum is a

Boolean sum of “minterms,” the minterms mj are
Boolean conjunctions of all the variables, each
uncomplemented or complemented (which is
analogous to rows in a “truth table”), and the
number of minterms in the Boolean expression
depends on the number of truth table values for
which the function is satisfied. Terming a
positive unate variable xi, there must be some
m(xi=1), due to the positive unateness. If there
are any m(xi=0), there is a corresponding (other
variables in identical senses) m(xi=1) because of
the containment relation such that the expression
for the minterm is identical except for xi. The
probability contributions of these two minterms
are pap(xi) and p p xa i[()]1− , respectively, where

pa is the aggregate of the probabilities of all the
other variables (which are common to the two
minterms). Since the sum of these two terms is
pa (as we know it must be because of the Boolean
identity x x x x xm n m n m+ =), there is no

contribution from the negative probability,
although it may be included in the probability
expression because of the inclusion of m(xi=0).
Since the only role of the negative quantity is to
cancel its positive counterpart, there can be no
inversion of the limits (i.e., the lower bound of
the positive unate variable contributes to the
lower bound of the result, and the upper bound of
the positive unate variable contributes to the
upper bound of the result).

b) There must be some m(xi=0), due to the
negative unateness. For each m(xi=1), if such a

term exists, there is a corresponding (other
variables in identical senses) m(xi=0) because of
the containment relation. The probability
contributions of these two minterms are
p p xa i[()]1− and pap(xi) , respectively, where pa

is the aggregate of the probabilities of all the
other variables (which are common to the two
minterms). Since the sum of these two terms is
pa (as we know it must be because of the Boolean
identity x x x x xm n m n m+ =), there is no

contribution from the positive probability,
although it must be included because of the
inclusion of m(xi=1). Since the only role of the
positive quantity is to cancel its negative
counterpart, there is inversion of the limits (i.e.,
the lower bound of the negative unate variable
contributes to the upper bound of the result, and
the upper bound of the negative unate variable
contributes to the lower bound of the result).

c) Since x x x x xm n m n m+ = , xn is redundant and

therefore is not needed in the computation of the
expression.

This result naturally extends from independent
variables to independent functions, as we will
demonstrate in a subsequent example. Once
unate variables have been processed, the solution
for any non-unate variables can be traditional,
but greatly simplified because of the removal of
unate variables from the problem. Parsing for
computer solution involves first determining the
unate variables and their bounds, and then
calculating the bounds for non-unate variables
based on the bounds of the unate variables.
Finally, all variable bounds are combined to
solve for the bounds of the result. The concepts
in the theorem, the processing of non-unate
variables, and the parsing order will be illustrated
through examples.

Example 1:

Consider the Boolean function (of three
independent variables)y x x x x1 1 2 2 3= ∪

3. The

first and third variables are positive unate; the
second is negative unate. An expression

3 The convention used in these examples is that where the
∪ symbol appears, the disjunction is a logical “or,” and the
juxtaposition indicates logical intersection; where the +
symbol appears, the disjunction is ordinary addition, and the
juxtaposition indicates ordinary multiplication. We also
work these examples implicitly assuming that all of the
variables in the function are independent.

13

(methodology of Ref. 3) for the probability of y1

is P y P x P x P x P x P x() () () () () ()1 1 2 1 2 3= + .

According to the theorem, the constrained
mathematics treatment for any expression of the
function using lower and upper bounds (e.g.,
fuzzy mathematics or interval analysis) is:

P y P x P x P x P x P xl l l u l l() () () () () ()1 1 2 1 2 3= +
P y P x P x P x P x P xu u u l u u() () () () () ()1 1 2 1 2 3= +

If P(x1), P(x2), and P(x3) are interval numbers
[0.2, 0.4], [0.7, 0.9], and [0.4, 0.6] respectively,
the result is P y()1

=[0.052, 0.228].

Example 2:

For the function y x x x x x x2 1 3 2 4 2 3= ∪ ∪ , x1 and

x4 are positive unate, x3 is negative unate, and x2

is not unate. The probability expression is:
P y P x P x P x P x P x P x P x P x() () () () () () () () ()2 2 4 2 3 1 2 3 4= + +
. The bounds solution directly implements the
bounds for x1, x3, and x4 as:
P y P x P x P x P x

P x P x P x P x
l l l

l l u

() () () () ()

() () () ()
2 2 4 2 3

1 2 3 4

= +
+

 and

P y P x P x P x P x

P x P x P x P x
u u u

u u l

() () () () ()

() () () ()
2 2 4 2 3

1 2 3 4

= +
+

. The

solution for P(x2) depends on the sign of the
function of the other variables that are producted
with P(x2). Taking a partial derivative with
respect to P(x2):
∂
∂

P y

P x
P x P x P x P x P x

()

()
() () () () ()

2
4 3 1 3 4= − + .

Then if P x P xl l() ()4 3 0− ≥ , P(x2)l can be used

in the computation for P(y2)l. If
P x P xl l() ()4 3 0− ≤ , P(x2)u can be used in the

computation for P(y2)l. If P x P xu u() ()4 3 0− ≥ ,

P(x2)u can be used in the computation for P(y2)u.
If P x P xu u() ()4 3 0− ≥ , P(x2)l can be used in the

computation for P(y2)u.

For P(x1) = [0.1, 0.3], P(x2) = [0.7, 0.9], P(x3) =
[0.4, 0.6], and P(x4) = [0.6, 0.8], P(y2) = [0.5512,
0.8124]

Many forms of Boolean expressions that do not
meet any unateness criteria can be processed
almost as efficiently as those described above. In
order to demonstrate this, we will address the
“exclusive-or” function (satisfied if an odd
number of inputs are satisfied) and its inverse
(satisfied if an even number of inputs are
satisfied). These have in many respects

characteristics completely opposite to unateness
(there are no pairs in exclusive-or functions (or
their inverses) such that m(xi=0) = m(xi=1) in the
terminology of Theorem 1). Since these
functions are linear and associative, they can be
computed iteratively, which simplifies
algorithmic implementation. A general theorem
will help illustrate these concepts.

Theorem 2:

For an exclusive-or of n Boolean variables (or
Boolean functions), consider two of the variables
(or functions), w and z, where w and z can each
represent either some xi or xi , a) if

P w u() .≤ 05, and P z u() .≤ 05, P(y)l is a function

of P(w)l and P(z)l ; and P(y)u is a function of
P(w)u and P(z)u . b) If P w u() .≤ 05, and

P z l() .≥ 05, P(y)l is a function of P(w)u and

P(z)l; and P(y)u is a function of P(w)l and P(z)u .
c) If P w l() .≥ 05, and P z u() .≤ 05, P(y)l is a

function of P(w)l and P(z)u ; and P(y)u is a
function of P(w)u and P(z)l. d) If P w l() .≥ 05,

and P z l() .≥ 05, P(y)l is a function of P(w)u and

P(z)u ; and P(y)u is a function of P(w)u and P(z)u

e) P w u() .≤ 05, P z l() .≤ 05, and P z u() .≥ 05,

P(y)l is a function of P(w)l and P(z)l ; and P(y)u

is a function of P(w)l and P(z)u . f) If
P z u() .≤ 05, P w l() .≤ 05, and P w u() .≥ 0 5, P(y)l

is a function of P(w)l and P(z)l ; and P(y)u is a
function of P(w)u and P(z)l . g) If P w l() .≥ 05,

P z l() .≤ 05 and P z u() .≥ 05, P(y)l is a function

of P(w)u and P(z)u ; and P(y)u is a function of
P(w)u and P(z)l . h) If P z l() .≥ 05, P w l() .≤ 05
and P w u() .≥ 05, P(y)l is a function of P(w)u

and P(z)u ; and P(y)u is a function of P(w)l and
P(z)u . i) Furthermore, if P w l() .≤ 05,

P z l() .≤ 05, P w u() .≥ 0 5, and P z u() .≥ 05, P(y)l

is either a function of P(w)l and P(z)l or P(w)u

and P(z)u ; and P(y)u is either a function of P(w)l

and P(z)u or P(w)u and P(z)l .

If more than one condition is met, either of the
indicated options corresponding to the satisfied
conditions can be used. Although this theorem
appears cumbersome, it is merely a cataloging of
all of the possible combinations, which is
straightforward to implement algorithmically.
The ease of use will be illustrated by the
examples following the proof.

14

Proof:
Since P y P w P z P w P z() () () () ()= + − ×2 , we

can derive ∂
∂

P y

P w
P z

()

()
()= −1 2 and

∂
∂
P y

P z
P w

()

()
()= −1 2 . In the first case, if

P(z)≤ 0.5, the derivative is everywhere
nonnegative, so higher values of w lead to higher
(or equal) values of P(y) and vice versa. If
P(z) ≥ 0.5, the derivative is everywhere
nonpositive, so lower values of w lead to higher
(or equal) values of P(y) and vice versa. The
situation is identical for the variable z as
indicated by the second partial derivative. These
conclusions taken in the combinations indicated
correspond to the theorem parts a through h. For
part i, we apply the partial derivatives in pairs to
show that if P(w) ≤ 0.5 and P(z) ≤ 0.5,
decreasing both w and z leads to lower (or equal)
values of P(y). If P(w) ≥ 0.5 and P(z) ≥ 0.5,
increasing both w and z leads to lower (or equal)
values of P(y). If P(w) ≤ 0.5 and P(z) ≥ 0.5,
decreasing w and increasing z leads to higher (or
equal) values of P(y). If P(w) ≥ 0.5 and
P(z) ≤ 0.5, increasing w and decreasing z leads to
higher (or equal) values of P(y).

Example 3:

Consider y x x x3 1 2 3= ⊕ ⊕ , where P(x1) = [0.1,

0.2], P(x2) = [0.6, 0.8], and P(x3) = [0.6, 0.7].
First, compute P z P x x() ()= ⊕1 2

. Since both

operands are everywhere less than 0.5, the lower
bound of P(z) is a function of the lower bounds
of P(x1) and P(x2), and the upper bound of P(z)

is a function of the upper bounds of P(x1) and
P(x2). We compute P(z) = [0.26, 0.44].

Combining this with P(x3) (operands both greater
than 0.5), P(y)l is a function of P(z)u and P(x3)l,
and P(y)u is a function of P(z)l and P(x3)u. The
result is P(y) = [0.512, 0.596].

Example 4:

Consider y x x x x4 1 2 3 4= ⊕ ⊕ ⊕ , where P(x1) =

[0.1, 0.2], P(x2) = [0.3, 0.6], P(x3) = [0.2, 0.6],
and P(x4) = [0.6, 0.7]. First (arbitrarily),
compute P z P x x() ()1 1 4= ⊕ . Since

P x u() .1 05≤ and P x l() .4 0 5≥ , P z l()1 is a

function of P(x1)u and P(x4)l , and P z u()1 is a

function of P(x1)l and P(x4)u . The first

intermediate result is: P z()1 = [0.56, 0.66].

Next, compute P z P z x() ()2 1 2= ⊕ . Since

P z l() .1 05≥ , and P(x2) is not constrained to

either less than or equal to 0.5 or greater than or
equal to 0.5,P z l()1 is a function of P z u()1

and P x u()2 , and P z u()1 is a function of

P z u()1 and P x l()2 . The second intermediate

result is : P z()2 = [0.468, 0.564]. Since neither

this result or that of P(x3) is constrained to

either less than or equal to 0.5 or greater than or
equal to 0.5, we search two choices for both P(y)l

and P(y)u . The final result is: P(y) = [0.4616,
0.5192].

When a function contains an independent
exclusive-or subfunction (i.e., the variable in the
exclusive-or are not necessary anywhere else in
the function), the subfunction can be tested for
unateness, and Theorems 1 and 2 can be
combined to solve for the bounds in the
exclusive-ored variables.

Example 5:

y x x x x x x x x x x x x

x x x x x x x x x x x x
5 1 2 3 4 1 2 3 5 1 2 4 5

1 2 3 4 1 2 3 5 1 2 4 5

= ∪ ∪
∪ ∪ ∪

, where

x1 = [0.6, 0.7], x2 = [0.4, 0.6], x3 = [0.3, 0.5], x4 =
[0.5, 0.6], and x5 = [0.1, 0.3]. The probability is:
P y P x P x P x P x P x P x P x P x

P x P x P x P x P x P x P x P x

() () () () () () () () ()

() () () () () () () ()

= +
+ +

1 2 3 4 1 2 4 5

1 2 3 4 1 2 4 5

. When the Boolean function is simplified to
y x x x x x x x x x x x x x x x x5 1 2 3 4 1 2 4 5 1 2 3 4 1 2 4 5= ∪ ∪ ∪
, it is apparent that x3 is positive unate, and x5 is
negative unate. When the methodology of Ref. 5
is applied to derive
y x x x x x x x x5 1 2 3 4 1 2 4 5= ⊕ + ⊕() () , it can be

seen that x x1 2⊕ serves the role of an

independent unate subfunction. Using the
information in the theorems, we can now
determine that P(y)l is a function of P(x1)u,
P(x2)u, P(x3)l , and P(x5)u; and P(y)u is a function
of P(x1)u, P(x2)l, P(x3)u, and P(x5)l. This leaves
only the functionality of the bounds of x4 to
determine. Taking the partial derivative,
∂
∂

P y

P x
P x x P x P x

()

()
()[() ()]

4
1 2 3 5= ⊕ − . Since this

derivative is everywhere negative, P(y)l is a
function of P(x4)u, and P(y)u is a function of
P(x4)l. The final result is: P(y) = [0.2116,
0.378].

15

Example 6:

y x x x x x x6 1 2 1 3 1 2= ∪ ∪ , where P(x1) = [0.2,

0.4], P(x2) = [0.7, 0.8], and P(x3) = [0.6, 0.8].
Since x3 is positive unate, P(y6)l is a function of
P(x3)l and P(y6)u is a function of P(x3)u .
Exclusive-or functionality is revealed by re-
writing the function [Ref. 3] and its probability
as: y x x x x6 1 2 1 3= ⊕ ∪() and

P y P x x P x P x P x() () () () ()6 1 2 1 2 3= ⊕ + , but

the exclusive-or function is not independent of
the second term. Taking the partial derivatives
with respect to x1 and x2:
∂
∂
P y

P x
P x P x P x P x

()

()
() () () ()6

1
2 2 2 3= − − and

∂
∂
P y

P x
P x P x P x P x

()

()
() () () ()6

2
1 1 1 3= − + . For the

lower bound of P(y6), using the lower bound of
P(x)3, we find that both partial derivatives can be
either positive or negative, but that the result
must either include both P(x1)l and P(x2)u or
P(x1)u and P(x2)l. The lowest result is obtained
using the first pair. For the upper bound of P(y6),
using the upper bound of P(x3), we find that the
first partial derivative is everywhere negative,
and the second partial derivative is everywhere
positive. This results in P(y6) = [0.704, 0.832].

The methodology outlined in this section is easily
implemented in software, as we have partially
done in our COSMET fuzzy mathematics
routines [Ref. 10], and the results obtained are
far superior to unconstrained operations. One
other note of interest is that independent events
are frequently assumed, but the assumption is
seldom realistic. Some software packages
attempt to compensate for this weakness by
allowing correlation to be specified. We prefer
subjective pairwise dependence measures
introduced within the theoretical Frechet
dependence bounds, which is also included in the
COSMET software [Ref. 10].

14. SOFTWARE

There are five tools (features) that have been
implemented in software; also implemented is a
mode of combining arbitrarily chosen constituent
tools. The software package under development
is named COSMET (Coordinated

Objective/Subjective Mathematically Enhanced
Tools). Four of the tools will be described here.

The “CONTEST” entry specifies the beginning
of a multi-line contest definition statement. This
allows the user to determine the possibility of a
weaklink device surviving a stronglink device. A
Contest tool plot is shown in Figure 3.

Figure 3. Contest Tool Plot

The “WEIGHTED-SUM” entry specifies the
beginning of a multi-line weighted sum definition
statement. The weighted sum tool allows the user
to qualitatively determine the possibility of
achieving a goal that is determined by the
combination of two or more related properties.
An example generated by this tool is illustrated
in Figure 4.

Figure 4. Weighted-Sum Example Problem

The “E-MINMAX” designation specifies the
beginning of a multi-line extreme Min/Max
definition statement. The extreme Min/Max tool
allows the user to determine and display the
extremes of the top event of a fault tree by
considering the "incredible" inputs. Figure 5
shows the results of an example problem.

16

Figure 5. Extreme Minmax Example Problem

The “L-MINMAX” entry specifies the beginning
of a multi-line link Min/Max definition
statement. The link Min/Max tool allows the user
to determine and display the result of two or
more responses that are combined according a
user-defined equation. An example problem is
shown in Figure 6.

Figure 6. Link Minmax Example Problem

CONCLUSIONS

A general logic paradigm is now possible, which
implements general gate logics, which
propagates basic event probabilities and basic
event truth values, and which incorporates both
random and ambiguous information in
determining event failure dependencies. A
special case of the general paradigm is the
classical probabilistic logic analysis with the
assumption of independent basic events. The
incentive for developing the proposed approach
comes from the need to conduct more realistic
analysis on safety systems where basic event
failure probabilities are formed with substantial
contributions from subjective information or
general information about first-principle laws of
physics.

The general paradigm proposed will
accommodate both active and passive safety
system analysis. This structure has been
generalized to contain various logic norms in the
modeling of event intersections or unions. The
inference that is implied at every gate in the tree
can be represented by any of a number of
implication procedures. The conventional logic
approach involving probabilistic “and” and “or”
norms and the classical implication as the
inference mechanism is a special case of the
proposed general paradigm. The proposed
method can be quite powerful, because it
provides a framework where numerical failure
information can be implemented along with
cognitive knowledge of a non-numeric form, for
example rule-based information about passive
safety features. Moreover, the proposed
paradigm is able to model event dependencies
implicitly within the implication choices
available to the analyst.

REFERENCES

1. Kaufmann, A. (1975) Introduction to Fuzzy
Subsets, Vol. 1, Academic Press, New York.

2. Cai, K. (1996) Special Issue on Fuzzy
Methodology in System Failure, Fuzzy Sets and
Systems, North-Holland, Vol. 83 (2).

3. Cooper, J. A., “Fuzzy-Algebra Uncertainty
Analysis for Abnormal-Environment Safety
Assessment,” Journal of Intelligent and Fuzzy
Systems, Vol. 2, No. 4, 1994.

4. Cooper, J. A., S. Ferson, and L. Ginzburg,
“Hybrid Processing of Stochastic and Subjective
Uncertainty Data,” Risk Analysis, Vol. 16, No. 6,
December, 1996.

5. Yager, R. (1988) "On Ordered Weighted
Averaging Aggregation Operators in
Multicriteria Decisionmaking", IEEE
Transactions Systems, Man, Cybernetics, Vol 18,
No. 1, 183-190.

6. Yager, R., and J. Kapryk, Eds., The Ordered
Weighted Averaging Operators-- Theory and
Applications, Kluwer Academic Publishers,
1997.

17

7. Ross, T. (1995) Fuzzy Logic with Engineering
Applications, McGraw-Hill, New York.

8. Klir, G. J. and J. A. Cooper, “On Constrained
Fuzzy Arithmetic,” Proceedings of the Fifth
IEEE International Conference on Fuzzy
Systems, 1996, pp. 1693-1699.

9. Heger, A. S., J. K. Bhat, D. W. Stack, and D.
V. Talbott, “Calculating Exact Top-Event
Probabilities Using ΣΠ-Patrec,”, Reliability
Engineering and System Safety, 50 (1995) 253-
259.

10. Cooper, J. A., “Theoretical Description of
Methodology in PHASER (Probabilistic Hybrid
Analytical System Evaluation Routine),” Sandia
National Laboratories Report SAND 96-0022,
January, 1996.

11. Lewis, R. M. II, and C. L. Coates, Threshold
Logic, John Wiley & Sons, Inc., 1967.

12. Cooper, J. A., “Orthogonal Expansion
Applied to the Design of Threshold-Element
Networks,” Stanford University Dissertation and
Stanford Electronics Laboratories Technical
Report 6204-1, SEL-63-123, December, 1963.

18

	Abstract
	Acknowledgments
	TABLE OF CONTENTS
	LIST OF FIGURES
	1. INTRODUCTION
	2. CONTEST TOOL
	3. MIN/MAX INTERVAL LOGIC TOOL
	4. MIN/MAX ORDINATE TOOL
	5. FUZZY 'AND' TOOL
	6. FUZZY “OR” TOOL
	7. LUKASHEWICZ NORMS
	8. COMPOSITION OPERATOR
	9. WEIGHTED SUM TOOL
	10. FUZZY SIMILARITY RELATIONS
	11. ACTIVE SAFETY SYSTEM APPROACH
	12. PASSIVE SAFETY SYSTEM APPROACH
	13. USE OF CONSTRAINED MATHEMATICS
	REFERENCES

